
1.  Introduction
Tropical forests only occupy less than 7% of the Earth's terrestrial surface but they play a critical role in reg-
ulating global energy, water, and carbon dynamics (Baccini et al., 2017; Ogden et al., 2013; Y. Pan, Birdsey 
et al., 2011; Wohl et al., 2012). Intact tropical forests are a major carbon sink contributing to almost half of the 
terrestrial carbon uptake (Blanc et al., 2009; Houghton, 2005; Watson et al., 2018). The structure and function of 
tropical forests are affected by both vegetation characteristics and soil properties. Vegetation characteristics deter-
mine forest photosynthesis capacities (Wu et al., 2017), carbon allocations (Ghimire et al., 2016), turnover times 
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(Negrón-Juárez et al., 2015), and species competition strategies (Fisher et al., 2015). Soil hydrological properties 
affect various water fluxes, including infiltration, runoff generation, groundwater recharge, and plant water up-
take in tropical forests (Bennett et al., 2021; Bruijnzeel, 1989, 2004; Powers et al., 2020; Sousa et al., 2020; Wohl 
et al., 2012). This will ultimately affect the productivity (Levine et al., 2019; Robinson et al., 2008), structures 
(Detto et al., 2013; Melton et al., 2015), compositions (Masaki et al., 2015; Russo et al., 2005), and functioning 
(Ito & Inatomi, 2012; Yan et al., 2020) of tropical forests (He et al., 2016; Kupers et al., 2019; Lohse et al., 2009). 
In addition, observational studies show that tropical forests undergo a range of successional regrowth pathways 
after disturbance (Mesquita et al., 2001). The successional balance between early and late successional species 
within a tropical forest ecosystem is also observed to be sensitive to soil properties (Baltzer et al., 2007; Marthews 
et al., 2008; Mendivelso et al., 2013; Silvertown et al., 2015).

To date, very few studies have considered the impact of soil properties and consequently the joint influence 
of vegetation characteristics and soil properties on tropical forest dynamics (e.g., Longo et al., 2019; Longo & 
Keller, 2019). More specifically for modeling, the sensitivity of tropical forest dynamics to both vegetation and 
soil hydrological parameters has received limited attention in the context of land surface models (LSMs), either 
due to inadequate representation of canopy heterogeneity in LSMs with a big leaf approach (which use area-av-
eraged leaf layer information of different vegetation types to represent plant communities within a land grid cell) 
or insufficient consideration of hydrological responses (Wohl et al., 2012). Meanwhile, achieving coexistence in 
vegetation demography models is still an ongoing research challenge (Koven et al., 2019) (Detto et al., 2021) and 
the impact of soil hydrology on plant coexistence is particularly poorly understood.

Vegetation traits and soil properties not only affect tropical forest structure and successional balance, but also reg-
ulate many critical hydrological and biogeochemical processes in tropical forests through the interplay between 
aboveground vegetation processes (e.g., photosynthesis, canopy transpiration) and belowground components 
(e.g., tree roots, decomposition) (Porazinska et al., 2003). These mechanisms are, however, also not well repre-
sented in LSMs with a big leaf representation. Therefore, there is a critical need to elucidate the joint impacts of 
vegetation traits and soil properties in LSMs toward a more realistic representation of ecosystem processes and 
tropical forest dynamics, especially under a changing environment.

Here we use the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) (Fisher et  al., 2015; Ko-
ven et al., 2019) implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM) (Leung 
et al., 2020), ELM-FATES, to investigate the joint effects of vegetation characteristics and soil properties on 
tropical forest dynamics. In contrast to the “big leaf” model used in the majority of traditional LSMs, FATES ex-
plicitly simulates ecological demographic processes in forests, such as discretization in vegetation heights, light 
competition of different plant functional types (PFTs) within the same vertical profile, and heterogeneity in light 
availability along disturbance and recovery trajectories (Fisher et al., 2018; Longo et al., 2019). The structured 
demography in FATES facilitates simulation of successional variation and coexistence of vegetations. This al-
lows a more realistic representation of forest age and composition (Fisher et al., 2010, 2018; Longo et al., 2019). 
In comparison to observations at a tropical forest site, Koven et al. (2019) reports two systematic biases across a 
large perturbed parameter ensemble of FATES simulations. First, the default calibration of FATES overestimates 
the difference between the wet season and dry season gross primary production (GPP), as compared to obser-
vations. Second, FATES-simulated latent and sensible heat (SH) fluxes are lower and higher than observations, 
respectively. Similar biases have been reported in other areas when using FATES, including the Amazon basin 
(Huang et al., 2020).

We hypothesize that these biases are due to errors in representing soil hydrological processes, belowground 
competitions, and ultimately the mechanisms that maintain coexistence between different PFTs. For example, 
soil hydrologic properties and root depth distribution may help maintain a high dry-season soil moisture and 
lead to better simulated dry-season GPP for mature tropical forest. Furthermore, the right combinations of soil 
hydrological parameters and plant traits may help achieve long-term coexistence among different PFTs. To test 
this hypothesis, we conduct a large ensemble of ELM-FATES simulations that specify two PFTs, correspond-
ing to early successional and late successional plants, to examine the sensitivity of tropical forest dynamics to 
parameters in the hydrological and vegetation physiology elements of the model concurrently, through a case 
study over the Barro Colorado Island (BCI), Panama. We compare ELM-FATES simulations against a wide 
range of observations, including carbon, energy, and water cycle fluxes and states. A logical starting point is to 
assume two contrasting PFTs (e.g., early and late successional PFTs). Although the tropical forest in BCI contains 
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hundreds of species, these two PFTs will provide enough complexity to ex-
plore the interactions between hydrology and forest dynamics along a succes-
sional axis and, at the same time, address questions about coexistence. The 
two PFTs differ in their photosynthetic traits, aboveground and belowground 
allocations, tissue turnovers, and survival rates. Plant hydraulics are not con-
sidered because it is unclear how early and late successional PFTs differ in 
this aspect and it would require more data for parameterization, adding more 
uncertainties. The sensitivity analysis conducted in this study for plant traits 
and soil parameters is an important first step to shed light on understanding 
the joint impacts of vegetation characteristics and soil properties on tropical 
forest dynamics.

2.  Data and Methods
2.1.  Model Description

The FATES is a size- and age-structured and cohort-based ecosystem demog-
raphy model (Fisher et al., 2015; Hurtt et al., 1998; Koven et al., 2019; Moor-
croft et al., 2001). A cohort, in this context, is a group of individuals of a 
particular vegetation type within a given size range, which is modeled as one 
representative individual. Cohorts with a similar size are grouped into spa-
tially implicit ‘patches’ that are themselves grouped by similar disturbance 
history at the landscape scale. Individual plants are scaled to a forest canopy 
based on the perfect plasticity approximation (Purves et al., 2008). FATES 

must be run with a ‘host’ land surface model, which provides water boundary conditions. In this study, FATES is 
embedded in the E3SM ELM, called ELM-FATES. In ELM-FATES, ELM simulates the terrestrial water cycle 
and energy fluxes, while FATES simulates vegetation processes, including photosynthesis, growth, allocation, 
competition, and ecosystem assembly (Figure 1). Cohorts within a patch compete for light based on their canopy 
heights and positions. Patches share a common pool of soil water within an ELM ‘column’ (Figure 1). For a full 
overview of ELM-FATES, readers are referred to Leung et al. (2020), Fisher et al. (2015), Koven et al. (2019), 
and the FATES technical note (https://fates-docs.readthedocs.io/).

2.2.  Study Site and Data

In this study, we use observational data from the BCI, Panama (9.151°N, 79.855°W) for model validation. The 
BCI site is covered by a primary forest. The mean annual precipitation is 2,700  mm yr−1, with distinct dry 
(mid-December to mid-April) and wet (late-April to early-December) seasons. Hourly meteorological data (i.e., 
precipitation, temperature, wind speed, relative humidity, radiation) from 2003 to 2016 (Faybishenko et al., 2018; 
Knox et al., 2019) are recycled to spin up the ELM-FATES simulations. Observational data used to validate the 
model include the aboveground biomass (AGB) (Chave et al., 2003), tree size distribution (Condit et al., 2017), 
GPP, SH, latent heat (LH), upper layer (top 15 cm) soil water content (SWC15), (Pau et al., 2018) and runoff 
(Cheng et al., 2018).

2.3.  FATES and Soil Hydrological Parameters

We select a comprehensive set of soil hydrological parameters, including saturated hydraulic conductivity (Ks), 
saturated soil water content (θs), the scaling exponent of the Clapp and Hornberger soil retention curve (Bsw) 
(Clapp & Hornberger, 1978), saturated soil matric potential (Ψs), maximum fractional saturated area (fmax), mean 
topographic slope (slope), decay factor that represents the distribution of surface runoff with depth (fover), and 
decay factor that represents the distribution of subsurface runoff with depth (fdrain) (Hou et al., 2012). For the plant 
physiology parameters in FATES, we investigate the sensitivity of the model to a selection of the most sensitive 
parameters that were identified in prior sensitivity studies (Huang et  al.,  2020; Koven et  al.,  2019; Massoud 
et  al.,  2019). The selected FATES parameters are maximum carboxylation rate of RuBisCO at the reference 
temperature (25°C; Vc,max), specific leaf area at the top of canopy (slatop), background mortality rate (mort), root 
and leaf turnover times (τroot and τleaf), and wood density (ρwood). ELM-FATES assumes an exponential decay 

Figure 1.  Schematic illustration of forest structure and composition and 
soil hydrology in Earth Land Model-Functionally Assembled Terrestrial 
Ecosystem Simulator (ELM-FATES). Light/dark green shows early/late 
successional plant functional types (PFT). Understory cohorts are shaded 
darker than canopy cohorts. Cohorts within a patch in FATES can compete for 
light based on their canopy heights and positions. Patches share and compete a 
common underground pool of water and nutrients within an ELM soil column. 
The early/late successional PFTs have greater fractions of shallow/deep roots.

https://fates-docs.readthedocs.io/
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using a two-parameter (roota and rootb) function (Equation S1 in Supporting Information S1) to represent the 
rooting depth distribution (Zeng, 2001) and we investigate sensitivity to these two parameters as well. Detailed 
explanations of the soil hydrological parameters and plant traits are provided in Table 1. For simplicity, leaf and 
root turnover times are set to be the same for the early PFT. This also holds true for the late PFT.

2.4.  Model Experiment Design

To test the responses of tropical ecosystems to a wide range of field conditions, we run ensemble simulations 
in which both soil hydrological parameters and plant traits can cover a full spectrum of parameter values within 
reasonable physical bounds. Latin Hypercube Sampling (LHS) (McKay et al., 2000) is used to assemble 1,000 
parameter sets using the ranges defined in Table 1. The LHS approach samples the parameter space more evenly 
and efficiently than simple random sampling. It splits the distribution of each parameter into a certain number 
of regions with equal probability. These unique parameter sets are used to drive the ELM-FATES model at the 
BCI site.

Symbol Parameter name Relevant process Unit Bound Reference

Soil hydrologic 
parameters

Ks Saturated hydraulic conductivity Soil water mm/s 0.00001, 0.02 (Hou 
et al., 2012; 

Huang 
et al., 2013)

θs Saturated water content (porosity) Soil water m3/m3 0.35, 0.6

Bsw Clapp and Hornberger exponent Soil water - 1.0, 30.0

ψsat Saturated soil matric potential Soil water mm 50.0, 350.0

fmax Maximum fractional saturated area Surface runoff - 0.01, 0.9

Slope Mean topographic slope Surface runoff - 0.01, 0.9

fover Decay factor that represents the distribution 
of surface runoff with depth

Surface runoff 1/m 0.1, 5.0

fdrain Decay factor that represents the distribution 
of subsurface runoff with depth

Subsurface runoff 1/m 0.5, 5.0

Plant traits Vc,max,early Maximum carboxylation rate of Rub. at 25C, 
canopy top for early PFT

Photosynthesis umol CO2/m
2/s 10, 106 (Domingues 

et al., 2005)

Vc,max,late Maximum carboxylation rate of Rub. at 25C, 
canopy top for late PFT

7.7, 95

slatop,early Specific Leaf Area (SLA) at top of canopy, 
projected area basis for early PFT

Leaf growth and 
turnover

m2/g C 0.007, 0.039 (Wright 
et al., 2004)

slatop, late Specific Leaf Area (SLA) at top of canopy, 
projected area basis for late PFT

0.005, 0.037

mortearly Background mortality rate for early PFT Mortality 1/yr 0.01, 0.1 (Longo 
et al., 2019)mortlate Background mortality rate for late PFT 0.004, 0.06

τroot, early Root turnover time for early PFT Root growth and 
turnover

yr 0.1, 1.5 (Huang 
et al., 2020)τroot, late Root turnover time for late PFT 0.2, 4.0

τleaf, early Leaf turnover time for early PFT Leaf growth and 
turnover

yr 0.1, 1.5

τleaf, late Leaf turnover time for late PFT 0.2, 4.0

ρwood, early Mean density of woody tissue in plant for 
early PFT

Stem growth g/cm3 0.2, 1.0 (Longo 
et al., 2019)

ρwood, late Mean density of woody tissue in plant for 
late PFT

0.3, 2.0

rootaearly Root distribution parameter 1 for early PFT ET, soil water, root 
growth

1/m 0.1, 8.0 (Zeng, 2001)

rootalate Root distribution parameter 1 for late PFT 0.07, 7.5

rootbearly Root distribution parameter 2 for early PFT ET, soil water, root 
growth

1/m 0.1, 8.0

rootblate Root distribution parameter 2 for late PFT 0.07, 7.5

Table 1 
Summary of Soil Hydrologic Parameters and Plant Traits Benchmarked in This Study for ELM-FATES
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It should be noted that the default setup of soil thickness in ELM is a spatially uniform value (i.e., 3.4 m) with 
10 discretized layers (Figure S1 in Supporting Information S1). To reduce the ensemble size, we aggregate these 
10 layers into five in this study (Figure S1 in Supporting Information S1), given the similarity of soil hydraulic 
properties in adjacent layers. The most straightforward and brute force method to determine the parameters for 
each layer is to randomly sample soil hydraulic properties in the five layers independently, but this could induce 
some unrealistic hydrologic behaviors. For instance, various field studies find that as soil depth increases, Ks and 
θs generally decrease (Hassler et al., 2011; Litt et al., 2020; Zwartendijk et al., 2017) and Bsw generally increases. 
To account for the layer dependence of the parameter values, the LHS samples related to Ks, Bsw, and θs are con-
strained to follow simple linear functions that vary with soil layers.

The ecosystem-level dynamics of tropical forests comprise a mosaic of plants of different PFTs. In particular, 
we expect that a vegetation model can represent canopy heterogeneity by accommodating at least two functional 
types, the light-demanding, fast-growing and early successional plants, and the shade-tolerant, slow-growing and 
late-successional plants (Huang et al., 2020; Koven et al., 2019; Needham et al., 2020). The representation of two 
contrasting PFTs with multiple distinct axes of trait variation is a logical starting point to explore the complex 
interactions between climate and plant strategies in a competitive environment. Therefore, in ELM-FATES, we 
parameterize two PFTs (i.e., early and late successional PFTs) to represent the primary axis of variability in 
tropical forests. Here, we assume that the early successional PFT has a lower wood density, shorter leaf and root 
lifetimes, a higher background mortality, and a greater fraction of shallow roots (Bretfeld et al., 2018). The late 
successional PFT has denser woody tissues, longer leaf and root turnover times, a lower background mortality, 
and a greater fraction of deep roots (Figure 1, Table S1 in Supporting Information S1) (Huang et al., 2020; Koven 
et al., 2019; Zhu et al., 2018). The early successional PFT can grow rapidly under high light conditions, while 
the late successional PFT can survive under a deeply shaded and closed canopy (Huang et  al.,  2020; Koven 
et al., 2019; Zhu et al., 2018). We use a set of early and late successional pairs to explore the effect of soil hy-
drologic and physiologic parameters on their dominance and coexistence. Importantly, the model, in the current 
stage, cannot represent seasonal phenological changes in LAI and other leaf traits. Although BCI does not have 
a dramatic seasonal variation in plant phenology (e.g., LAI varies in about 0.5 m2/m2) (Detto et al., 2018; Wirth 
et al., 2001), we recognize this is a limitation that needs to be addressed in future model developments.

3.  Results
3.1.  Large Ensembles of ELM-FATES Simulations

We assess the skill of each of the 1,000 ensemble ELM-FATES simulations against observed carbon (GPP), ener-
gy (LH, SH), water (SWC15, runoff), and forest (tree size distribution, AGB) dynamics at the BCI site (Figures 2 
and S4a in Supporting Information S1). Overall, the ensemble output encompasses the observed mean annual 
dynamics of biogeochemical and hydrological fluxes, with the ensemble median close to observations. Compared 
to the single-PFT simulation results in Koven et al. (2019), our two-PFT simulations have much narrower rang-
es of tree size distributions (Figure 2a). Another difference compared to Koven et al. (2019) is that allometric 
parameters were not varied in this study. Moreover, our simulations well capture the water cycle dynamics (e.g., 
ET, runoff, and soil moisture, Figures 2d–2f). These improvements are likely due to the joint consideration of 
physiological and soil hydrological parameters and the parameterization for early and late PFTs, while Koven 
et al.  (2019) only benchmarked physiology parameters for one PFT. Note that some ensemble members have 
very low simulated plant productivity, and some are even not able to establish (Figure 2b), suggesting sensitivity 
of the rates of forest establishment, growth, and mortality to physiological and soil hydrological parameters as 
well as their combinations. We examine the sensitivity of forest establishment to the ELM-FATES parameters in 
Section 3.3. In addition, compared to the systematic underestimation of LH and overestimation of SH in FATES 
compared to observations (Koven et al., 2019), the current ensemble simulations can better capture the total en-
ergy partitioning (Figures 2c and 2d).

3.2.  Sensitivity of Carbon, Energy, and Water Fluxes

Sensitivity of simulated water, carbon, and energy fluxes to hydrologic parameters and plant traits at the annual 
level is shown in Figure 3 via regression model sensitivity analysis following Xu and Gertner (2008), F. Pan, Zhu, 
et al. (2011), and Cheng et al. (2019). Consistent with previous studies that examined the sensitivity of carbon 



Journal of Advances in Modeling Earth Systems

CHENG ET AL.

10.1029/2021MS002603

6 of 18

cycle variables (Koven et al., 2019), the current ensemble simulations show that GPP, LAI, biomass, mortality 
and growth rates for canopy and understory plants are more sensitive to the physiological parameters, such as  
Vc,max, slatop, τroot, and τleaf, than they are to soil hydrological parameters (Figure 3a). In particular, model simu-
lations tend to be slightly more sensitive to the parameters of late successional PFT (e.g., Vc,max, τroot, and τleaf). 
Water budget components, such as upper-layer (top 15 cm) and total soil moisture, are more sensitive to soil hy-
draulic parameters than they are to plant traits (Figure 3a). In particular, soil moisture is most sensitive to Bsw and 
θs. There is no significant difference in sensitivity across the five soil layers. In contrast to the sensitivity of runoff 
to fover noted in previous modeling studies using prescribed satellite-derived plant phenology (Hou et al., 2012; 
Huang et al., 2013), we find that runoff is sensitive to physiological parameters (e.g., slatop, τroot, and τleaf) when 
the model prognostically simulates vegetation dynamics (Figure 3a). The behavior of energy cycle fluxes is more 

Figure 2.  Mean monthly (a) tree size distribution, (b) gross primary productivity, (c) sensible heat, (d) latent heat, (e) upper-layer (top 15 cm) soil water content, and 
(f) runoff between the Functionally Assembled Terrestrial Ecosystem Simulator implemented in the Energy Exascale Earth System Model Land Model (ELM-FATES) 
ensemble simulations (blue lines) and observations from Barro Colorado Island, Panama (orange lines). Gray area represents the dry season.
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Figure 3.  Sensitivity indices (total sensitivity in filled markers, uncorrelated sensitivity in open markers) of soil hydrological parameters (blue rectangle) and plant 
traits (red circle) for carbon (red title), water (blue title), and energy (black title) cycle fluxes and states over (a) all year, (b) dry season, and (c) wet season. The numbers 
1 to 5 in soil hydrological parameters are corresponding to the first to fifth soil depth layers. The numbers 1 and 2 in plant traits represent for early and late successional 
plant functional typess, respectively. The dashed lines separate each parameter and the solid lines separate soil hydrologic parameters and plant traits. Filled markers and 
associated lines show total sensitivity of each parameter, and open markers show independent sensitivity contributed by the uncorrelated variance of each parameter.



Journal of Advances in Modeling Earth Systems

CHENG ET AL.

10.1029/2021MS002603

8 of 18

complicated as they are sensitive to both soil hydrological (e.g., Ks and Bsw) and physiological parameters (e.g., 
Vc,max, slatop, τroot, and τleaf), as energy partitioning is controlled by both soil processes (e.g., soil evaporation) 
and vegetation growth (e.g., canopy evaporation and transpiration). For physiological parameters, LH and SH 
are sensitive to Vc,max and slatop as LAI is a key variable in determining these two energy fluxes. In addition to 
photosynthesis and leaf growth parameters, the heat fluxes are also sensitive to leaf turnover time (τleaf). This 
is because leaf biomass and LAI are controlled by the turnover processes besides processes of phenology and 
allocation. Consequently, τleaf controls energy fluxes through its impact in determining LAI (Figure 3). This is 
further evidenced by the fact that large variances of τleaf in explaining simulated energy fluxes are contributed by 
correlated variances rather than its isolated contribution.

Sensitivity of energy and water variables to hydrologic parameters and plant traits has a stronger seasonal de-
pendence than that of carbon cycle variables. During the dry season (mid-December to mid-April), there are no 
significant changes in sensitivity of carbon cycle variables (Figure 3b) compared to the simulated annual level 
(Figure 3a). However, for energy fluxes, the impact of physiological parameters decreases, and the impact of soil 
hydrological parameters increases. In addition, the sensitivity of water states and energy fluxes to Bsw increases. 
Over the wet season (late-April to early-December), rather than Bsw, θs explains the largest variance in soil mois-
ture (Figure 3c). This occurs because θs determines the maximum soil moisture when water is not a limiting factor 
during the wet season. The physiological parameters (e.g., slatop, τroot, and τleaf) become more important for energy 
fluxes, as LH/evapotranspiration is dominated by canopy transpiration during the wet period.

3.3.  Sensitivity of Forest Establishment

The sensitivity of forest establishment to plant traits and soil hydrological parameters is examined in Figure 4. 
Forest can establish in 597 scenarios among the 1,000 ensembles. The potential reason for the large number of 
simulations that forest failed to establish is our sampling over a wide range of parameters; some parameter combi-
nations may have led to elevated tree mortality in the model runs. Overall, the soil hydrological properties do not 
have much influence on forest establishment, as can be seen from the random scattering of dead and alive forests 
within the hydrologic parameter distributions (Figure 4a). Plant physiology parameters are key in controlling 
forest establishment, which is evident by the clear separation of dead and alive plants in the distributions for 
plant traits, especially for Vc,max, slatop, and τleaf,root (Figure 4b). This is within our expectation, as the physiology 
parameters determine photosynthesis rates and leaf areas, which are key for forest growth (Koven et al., 2019). 
We focus on the ensembles in which forest can successfully establish in the following analysis.

3.4.  Sensitivity of Dominance and Coexistence of Early and Late Successional PFT

By parameterizing two PFTs in this study, early and late successional plants, ELM-FATES is capable of simu-
lating successional outcomes. Simulation results range from competitive exclusion by late successional species 
to competitive exclusion by early successional species (Figure 5). While there is not a clear relationship between 
individual plant traits and the dominance of the two PFTs (Figure 5b), hydrologic parameters have a clearer rela-
tionship with their dominance (Figure 5a). Specifically, Bsw is a key parameter in maintaining functional diversity 
in humid tropical forests. Late successional PFT becomes dominant when Bsw is higher (>7); therefore, only 
small values of Bsw (1 ∼ 7) can support coexistence for early and late successional PFTs (Figures 5a and 6). Bsw is 
strongly dependent on soil texture and increases from coarse to fine soils. A higher value of Bsw means a stronger 
water retention capacity. Therefore, the impact of Bsw in controlling coexistence is highly related to its impact in 
controlling soil moisture. We discuss the underlying mechanism in Section 4.1.

3.5.  Impact of Tree Root Profile on Dry-Season Soil Moisture and GPP Dynamics

It is worth noting that some ensemble members can maintain a high GPP throughout the dry season (Figure 2b), 
consistent with observations. We select these ensemble members (Text S2 in Supporting Information  S1) 
to investigate the potential underlying mechanisms (Figure  7). In addition to better simulating dry-season  
GPP, these ensemble members are also the ones that can better simulate water and energy cycle fluxes and 
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states as well as AGB and tree size distributions, compared to other ensemble members (Figures S4b and S5 
in Supporting Information S1). For example, the average root mean square errors (RMSEs) of the selected 
ensembles/other ensembles are 13.9/32.1 kg C/m2, 310/1,718 g C/m2/yr, 19.9/36.8 W/m2, 22.2/47.4 W/m2, 
8.8%/9.4%, and 1.0/1.4 mm/d for AGB, GPP, SH, LH, SWC15, and runoff, respectively. In particular, all the 
selected ensemble members tend to have a high simulated dry-season shallow layer soil moisture (Figure 7e), 
corresponding to the high simulated dry-season GPP (Bretfeld et al., 2018; Bruijnzeel & Veneklaas, 1998; De 
Gouvenain et al., 2007; Maréchaux et al., 2018). There could be two possible pathways to explain the mainte-
nance of dry-season soil moisture and GPP, either through changes in soil hydraulic properties or root system 
characteristics. Our results support the latter mechanism because we found that the ELM-FATES simulations 
that can maintain the dry-season soil moisture and GPP consistently have greater fractions of deeper roots 
(Figures 8a and 8b). For example, the mean root fraction below 34 cm of the selected ensembles/other ensem-
bles are 0.06/0.03 and 0.07/0.04 for the early and late PFTs, respectively (Figures 8c and 8d). Meanwhile, the 
soil matric potential that limits root water uptake and the soil water stress index (βsw, Text S4 in Supporting 
Information S1) that represents root-weighted water availability, are highly different between the shallower 
and deeper soil layers (Figure S6 in Supporting Information S1). The shallower soil layers consistently have a 
higher soil matric potential and a lower βsw in the dry season than that in the wet season, indicating larger dif-
ficulties for plants to uptake soil water in the surface layers during the dry season. Because the deeper rooting 
systems allow trees to preferentially extract water from deep soil depths that have a lower soil matric potential 
and a higher root-weighted water availability rather than from surface soil layers, a high dry-season water con-
tent is maintained in the shallow layers. In addition, the distribution of βsw along the vertical soil depth (Figure 
S7 in Supporting Information S1), which integrates the impacts of both soil properties and rooting parameters 
(Text S4 in Supporting Information S1), consistently follow the patterns of root distribution profiles for both 
early and late PFTs (Figures 8a and 8b). This further demonstrates the dominant impact of root distribution 
profiles on soil moisture.

Figure 4.  Matrix of (a) soil hydrologic parameters and (b) plant traits used in this study, separated by dead (red dots) and alive (blue dots) forests. The diagonal plots 
are kernel density estimates for parameters in the horizontal axis, separated by dead (red color) and alive (blue color) forests. Forest establishment is sensitive to plant 
traits, evidenced by the clear separation between dead and alive forests in the distributions for Vc,max, slatop, and τleaf,root. This figure only includes the top layer hydrologic 
parameters and early successional plant functional types (PFT) for illustration purposes, but results are similar for other soil layers and the late successional PFT (see 
Figure S2 in Supporting Information S1).
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In addition to better capturing carbon, water, and energy cycle dynamics, the parameter values for these selected 
ensemble members also agree with field data collected in tropical forests. Specifically, for soil hydrological pa-
rameters, the median values of Ks and θs for these selected simulations are 33 mm/hr and 0.56 m3/m3, respectively, 
which are consistent with field observations collected in Panama sites (Ks and θs are 26 mm/hr and 0.57 m3/m3, 

respectively) (Hassler et al., 2011; Litt et al., 2020). The median value of Bsw 
for the selected ensemble members is 14.8, similar to the mean (standard 
deviation) value of typical Bsw for the clay soil in BCI (Powell et al., 2018), 
which is 11.4 (3.7) (Clapp & Hornberger,  1978). We further compare the 
simulated soil water retention curve of the selected ensembles with the soil 
water potential and soil water content data measured in BCI, Panama (Kupers 
et al., 2019; Text S2, Figures S4c-d in Supporting Information S1). Impor-
tantly, the retention curves of these selected ensembles that work best in sim-
ulating tropical forest dynamics are consistent with those typical soil water 
retention data in the BCI site (Figure S4d in Supporting Information S1).

The median values of Vc,max for early and late PFTs are 46.7 and 36.8 μmol 
CO2/m

2/s, respectively. The median ρwood values for early and late PFTs are 
0.6 and 1.1 g/cm3, respectively. These physiological parameter values for the 
selected ensemble members also agree with field measurements for mature 
tropical forests (observed Vc,max ranges from 18 to 59 μmol CO2/m

2/s in a wet 
evergreen tropical forest site, and ρwood is 0.5 and 0.9 g/cm3 for early and late 
PFTs, respectively) (Gu et al., 2016; Longo et al., 2019; Rogers, 2014; Wu 
et al., 2017).

Figure 5.  Same as Figure 4, but separated by coexistence (orange dots) and dominance of early (red dots) and late (blue dots) successional plant functional types 
(PFTs). The Bsw parameter is key in controlling coexistence, evidenced by the clear separation between coexist (orange dots) and non-coexist simulations in its 
distribution. Increases in Bsw promotes the late successional PFT. This figure only includes the top layer soil hydraulic parameters and early successional PFT for 
illustration purposes, but results are similar for other soil layers and the late successional PFT (see Figure S3 in Supporting Information S1).

Figure 6.  Relationship between the Bsw parameter and the fraction of biomass 
in early successional plant functional types (PFT), separated by all early 
PFT (red dots), all late PFT (blue dots), and coexistence (orange dots). Late 
successional PFT becomes dominant when Bsw increases. Only small values of 
Bsw can support coexistence.
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4.  Summary and Discussions
4.1.  Joint Effects of Vegetation Characteristics and Soil Features on Tropical Forest Dynamics

Numerous studies have demonstrated the critical role of plant physiology characteristics in determining the re-
sponse of tropical forest dynamics to global changes, such as tree mortality rates (Needham et al., 2020), sto-
matal conductance (Wu et al., 2020), and allocation to leaves and reproduction (Detto et al., 2018; Rademacher 
et al., 2019). However, studies to examine the role of hydrological properties are still limited (Baker et al., 2009; 
Christoffersen et al., 2014; Manoli et al., 2018). This study uses an advanced ecosystem demography model, 
ELM-FATES, at BCI, Panama to investigate the joint role of vegetation characteristics and soil properties in 
altering tropical forest dynamics. Our results are consistent with previous studies (Huang et al., 2020; Koven 
et al., 2019) in several perspectives. First, carbon cycle fluxes (e.g., GPP, LAI, biomass, and tree growth and 
mortality rates) are more sensitive to the vegetation parameters (e.g., Vc,max, slatop, τleaf, and τroot, Figure 3) than 
to the soil hydrological parameters. Second, energy fluxes (e.g., SH and LH fluxes) are more sensitive to the 

Figure 7.  Same as Figure 2, but for selected Earth Land Model-Functionally Assembled Terrestrial Ecosystem Simulator simulations that can maintain a high dry-
season gross primary productivity. The parameter values for these selected ensembles are shown in Figures 8 and S6 in Supporting Information S1.
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physiological parameters during the wet season (Figure 3c) when canopy transpiration dominates the LH flux. 
Third, physiological parameters (e.g., Vc,max, slatop, τleaf, and τroot) are key in controlling forest establishment in 
the model (Figure 4b).

Our results also demonstrate, however, that jointly perturbing plant traits and soil hydrological parameters can 
correct the systematic bias in previous FATES simulations (Koven et al., 2019), especially for simulations of 
energy partitioning (Figures 2c and 2d). This is because the model can simulate a better plant productivity (Fig-
ure 2b) and water budget including ET (Figure 2d), soil moisture (Figure 2e), and runoff (Figure 2f). These results 
have important implications as accurate predictions of energy partitioning are necessary to represent the biophys-
ical effect of land surface processes at regional scale, which can feedback to climate through land-atmosphere 
interactions (Bonan, 2008; Cheng et al., 2021).

Consistently, soil hydraulic parameters (e.g., Bsw, θs) drive hydrological responses (e.g., soil moisture, Figure 3). 
Energy fluxes are more sensitive to soil hydraulic parameters (e.g., Bsw, Ks) than they are to plant traits during 
the dry season (Figure 3b) when soil evaporation is an important component of evapotranspiration. In addition, 
Bsw plays the most important role in modulating soil moisture variation, which is more profound during the dry 
season. It should be noted that ESMs usually assign soil hydraulic properties using a pedotransfer function de-
rived from some easily measured soil texture attributes (e.g., percentages of sand and clay). Rather than using 
the estimated pedotransfer functions, this study directly specified all the soil hydraulic parameters. However, 
uncertainties in pedotransfer functions should not be overlooked, as these functions are not uniform across ESMs, 
varying from simple linear regression to complicated non-linear forms (e.g., Tóth et al., 2015). These formulas 
can yield different soil hydraulic properties even with the same observed soil texture.

Moreover, Bsw, which is a function of soil type, is a key parameter in controlling functional diversity for early 
and late successional PFTs (Figure 5a). Higher Bsw values (>7) favor late successional species in competition, 
therefore only a small range of Bsw values (1 ∼ 7) can achieve coexistence for early and late successional PFTs 

Figure 8.  (a–b) Root depth distributions and (c–d) boxplot of mean deep layer root fraction for early (first column) and late (second column) successional plant 
functional types. Orange line shows the default root profile in Earth Land Model-Functionally Assembled Terrestrial Ecosystem Simulator (ELM-FATES). Gray lines 
are sampled root fraction distributions for all the ELM-FATES ensembles. Blue lines are selected ELM-FATES ensembles that can maintain a high dry-season soil 
moisture and gross primary productivity.
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(Figure 6). This successional balance (i.e., either early or late PFT dominant or coexist) associated with changes 
in Bsw is a result of responses of soil moisture to changes in Bsw. Higher Bsw values are associated with higher per-
centage of clay fraction, thereby soil water content would decrease slower with increased positive suction head. 
As a result, the water retention capability is higher as Bsw increases. This is evident from the statistically signif-
icant difference in soil water content between scenarios with low and high Bsw values (Figure S8 in Supporting 
Information S1). The higher soil water content associated with higher Bsw values promote late PFTs. In summary, 
the changes in soil moisture resulting from changes in Bsw differentiate which species is more competitive and 
determine which species can establish and if there is coexistence for early and late successional PFTs. Evidence 
of the impacts of soil hydrology on composition and diversity of tree species has been reported in tropical forests 
(e.g., Chaturvedi, 2018; Hulshof & Spasojevic, 2020; Jiang et al., 2016; Kursar et al., 2005; Martins et al., 2015; 
Sarvade et al., 2016; Sollins, 1998; Wan et al., 2019). For example, Martins et al. (2015) found that soil types 
influence tropical forest structure and composition in southern Brazil. Jiang et al. (2016) examined plant compo-
sition/diversity and their abiotic determinants across six tropical forest types in Hainan, China. They found that 
forest composition/diversity is closely associated with soil properties. These results suggest that simultaneous 
considerations of plant traits and soil hydrological parameters are necessary to capture and predict the overall 
ecosystem dynamics and species composition in tropical forests.

Furthermore, not only soil properties affect the plant composition/diversity, but tropical forests also tend to mod-
ify these properties of soil (Zhang et al., 2018, 2019; Zinke, 1962), which generates important plant-soil feed-
backs (Kulmatiski et al., 2008). More field and experimental efforts are needed to gain a better understanding 
of the hydrology-vegetation feedback mechanisms to explain and maintain species diversity in tropical forests 
(Sollins,  1998). Such investigation will improve understanding and prediction of the vulnerability and resil-
ience of tropical forest diversity under global changes such as climate change and re/deforestation (Pugh, Ar-
neth et  al.,  2019; Pugh, Lindeskog et  al.,  2019), which is critical for water and forest management (Ghimire 
et al., 2014; Jirka et al., 2007).

4.2.  Uncertainties and Limitations

We note several uncertainties in our study. First, while we derived the ranges for the soil hydrological and physio-
logical parameters from literature to cover a possibly full spectrum of parameter values within reasonable physical 
bounds (Table 1), it may still be insufficient to fully cover the field conditions, especially across different tropical 
regions, and no trait covariances (Osnas et al., 2013) were used. For instance, although simulations in this study 
can better capture the differences in GPP between the wet and dry seasons (Figures 2b and 7b), deficiency in 
capturing wet-season GPP still exists (Figures 2b and 7b). The capacity and covariance of the selected parameter 
sets can be expanded to improve the trade-off of the model performance between the wet and dry seasons for GPP 
to better understand the mechanisms of the dry/wet season differences in tropical rain forest (Fisher et al., 2015).

Second, though modeling two contrasting PFTs provides enough complexity to explore the complicated inter-
actions between hydrology and plant strategies, in reality, tropical forests have richer tree species diversity than 
the early and late successional PFTs considered in this study. Similar experimental design might apply to larger 
numbers of PFTs, by which the results can help assess how the number of PFTs can influence the model simu-
lation results.

Third, several previous studies have demonstrated the importance of seasonal and age variations in plant traits 
in regulating tropical forest seasonality (Kim et al., 2012; Manoli et al., 2018; Restrepo-Coupe et al., 2017; Wu 
et al., 2016). Although the seasonal and age variations of leaf traits is not implemented in the current model, it 
is intriguing that the model is still able to simulate the seasonal cycles of water and energy fluxes. This suggests 
that the seasonal and age variations of leaf traits is not the only factor necessary to explain the tropical forest sea-
sonality. Despite this, we recognize this is a limitation that deserves more efforts in future model developments. 
On BCI, there are multiple strategies of leaf phenology, such as evergreen, dry deciduous, brevi-deciduous, leaf 
exchangers, with new flushes occurring at the transition of wet-to-dry and dry-to-wet seasons, even species with 
multiple flushes a year. For this reason, the effect of phenology might not be so intuitive as it might seem. For 
example, a more open canopy in the dry season will give access to lower layers to light, which can burst photo-
synthesis in the understory and partially compensate for the reduced photosynthesis in the canopy. Actually, many 
species in the understory rely on the dry season for access to light and are prepared to maximize productivity 
during this time of the year (Tang & Dubayah, 2017). Thus, representing these phenological strategies in models 
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will be a great challenge that the modeling community needs to face to better predict fluxes in seasonal tropical 
forests. Representing these seasonality and forest age dependency for plant traits is underway in ELM-FATES but 
beyond the scope of this study.

Moreover, this study examines the impact of vegetation characteristics and soil properties on tropical forest dy-
namics through a case study in Panama. Despite the general applicability of the model framework this study de-
veloped, we note that the mechanism for supporting plant composition and diversity discussed here may depend 
on the site conditions in BCI, Panama. For instance, there is small seasonality of GPP in BCI, Panama, while 
there is modest seasonality of GPP for most of tropical forests in Amazon (Restrepo-Coupe et al., 2017). Further 
study can be conducted to understand whether the mechanisms to maintain dry-season GPP and plant diversity 
are robust across different tropical areas.

4.3.  Future Directions

4.3.1.  Belowground Processes

We find that belowground components play an important role in simulating the dry-season soil moisture and GPP 
in the humid tropical forests. A greater fraction of deeper roots can better capture dry-season soil moisture and 
GPP because it allows trees to extract water from deep soil layers. This is consistent with several studies (e.g., 
Baker et al., 2009; Christoffersen et al., 2014; Restrepo-Coupe et al., 2017). These results highlight the impor-
tance of below-ground components in regulating the hydrological and vegetation dynamics in tropical forests 
and the linkage between aboveground and belowground processes (Porazinska et al., 2003; Schröter et al., 2004). 
However, the representation of roots is still simplified in current ecosystem demographic models, which usually 
assume a fixed exponential decay distribution (Zeng, 2001) and therefore limits its capability to capture the re-
sponse and feedback of roots to the environment (e.g., soil moisture heterogeneity). In addition, root profiles in 
most ecosystem demographic models do not vary with plant size and height, ignoring the fact that different plants 
(e.g., canopy and understory species) have very different root distribution, depth, and fraction in different soil 
layers. Therefore, a time-varying (e.g., related to age and size) rooting system (e.g., Drewniak, 2019) should be 
implemented to improve the representation of belowground processes and investigate the effect of dynamic roots 
on water uptake and plant productivity.

Though this study illustrates the role of root depth distribution in controlling soil moisture and GPP during the dry 
season, plant hydraulic redistribution can relocate water from deep to shallow soil layers (Caldwell et al., 1998; 
Dawson, 1996; Oliveira et al., 2005). This hydraulic lift could be another potential mechanism for sustaining the 
high GPP and shallow layer soil moisture during the dry season (Caldwell et al., 1998; Oliveira et al., 2005). In-
cluding the diversity of plant hydraulic traits may increase in the ability of the model to differentiate the strategies 
of extracting water from the soil. Without including a plant hydraulics scheme and consideration of sensitivities 
of plant hydraulics-associated parameters may skew the sensitivity to soil hydrology-related parameters explored 
in this study. A more comprehensive analysis of plant hydrologic traits using a plant hydrodynamic module 
should provide additional insights to further explore the mechanisms that sustain the dry-season soil water con-
tent, plant gas exchange, and maintain diversity.

4.3.2.  Soil Functions

A growing body of literature has documented the overlooked importance of small-scale soil structure features 
in affecting large-scale hydrologic and climatic processes (e.g., Wei et al., 2014). For instance, tree root growth 
and decay, earthworm burrowing, and soil shrinking/swelling create preferential flow paths and can change the 
partitioning of precipitation into runoff, root zone moisture, and groundwater recharge in tropical catchments 
(Beven & Germann, 2013; Cheng et al., 2017, 2018, 2019; Litt et al., 2020). These hydrological processes can 
interact with the carbon cycle to further alter the surface fluxes and plant growth (Bundt et  al.,  2001; Don 
et al., 2011; Hagedorn & Bundt, 2002). However, inadequate representation of soil structural characteristics in 
the context of ESMs constrains our ability to accurately assess and attribute these impacts. Additional sensitivity 
analysis could be conducted by incorporating soil structure parameters/functions into ESMs (Clark et al., 2015; 
Fisher & Koven, 2020). Moreover, more field studies, such as water partitioning using stable isotopes (Silver-
town et al., 2015), measuring soil water retention curve (Hodnett & Tomasella, 2002) and root architecture (Guo 
et al., 2020), are needed to determine the soil texture parameters and below-ground allocations and processes 
(Robinson et al., 2008).
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